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One-dimensional magnetogasdynamics in oblique fields 

By J. A. SHERCLIFF 
Department of Engineering, University of Cambridge 

(Received 2 August 1900) 

Earlier work on the dynamics of a perfectly conductive gas in situations where 
all variables depend on one space co-ordinate only is extended to the case where 
the magnetic field has a component in the direction of variation. The theory is 
developed for an arbitrary gas in equilibrium, subject only to certain reasonable 
restrictions. 

The first main section studies the variation of the transverse field component 
in slow and fast simple waves and the tendency of compressive waves in which 
the transverse field does not change sign to steepen into shocks. 

The next section develops a symmetrical treatment of the Rayleigh, Fanno 
and other processes of ordinary steady one-dimensional gasdynamics, general- 
ized to allow for electromagnetic effects. The slow, fast and Alfvh wave speeds 
are critical. A particular cassgf this analysis is a generalization of ordinary gas- 
dynamics which allows for the effect of transverse forces such as occur in turbo- 
machinery. 

The final section is an exhaustive study of shocks in the presence of a field 
component normal to the shock front. From the generalized Rayleigh line it is 
established that there are up to six different types of shocks, all compressive and 
distinguishable by the relative magnitudes of the upstream and downstream 
normal velocities in comparison with the local slow, fast and Alfvh wave speeds. 

Some aspects of shock structure are discussed briefly. 

1. Introduction 
In  an earlier paper (Shercl8 1960) the theory of one-dimensional magneto- 

gasdynamics was developed for arbitrary, isotropic, conducting gases in thermo- 
dynamic equilibrium for the case where the magnetic field is transverse to the 
longitudinal direction, i.e. the direction in which variation occurs. In  this paper 
we extend the analysis to the situation where there is also a longitudinal magnetic 
field component. This adds the complication that transverse momentum is no 
longer conserved. 

The meanings of some of the less obvious symbols used in the paper are defined 
in the following list. 

B = magnitude of magnetic field B 
Notation 

B,, etc., Cartesian components of B 
b = B!(PP)t 

Fs = p +pv: + B$p 

b, = B,kPPP, etc. 

Fu = PV, vzl- BxB,lP 
c = fast or slow sound speeds (ct and c,, respectively) 
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fz = P+P": 
B = pv, 
h = enthalpy; also lABu1/B, upstream of shock 

5, = (a/b)2, upstream of shock 
v = magnitude of velocity v 

X = v",v:(a2+b2)+a2b$ 

Po = 1/70 
r0 = BE/pG2 
A = difference across shock 
'?, etc., bar denotes mean between two sides of shock 
1,2  (suffices) upstream, downstream of shock 

It is desirable to develop the theory so as to apply to any gas, since magneto- 
gasdynamics often concerns partially ionized or reactive gases of variable mean 
molecular weight. It is, moreover, easier on the whole to treat a general gas 
rather than a perfect gas, for which the algebra becomes very complicated. The 
speed of sound, a, which appears in the analysis, refers to the speed of waves of 
low enough frequency for the maintenance of equilibrium of ionization and other 
effects. The only restrictions placed on the properties of the gas are: (i) stability; 
i.e. (+lap), > 0 and cp  > 0,  and (ii) the conditions of Weyl(l949); (82p/872)s > 0, 
and positive expansion coefficient, i.e. (8~/%!')~ > 0, @ p / h ) ,  > 0,  etc. 

There are three main sections in the paper. Section 2 deals with the behaviour 
of simple waves in a perfect conauctor, investigating particularly the changes of 
magnitude and sign of the transverse field component and the tendency of 
compressive waves in which the transverse field does not change sign to steepen 
into shocks. 

Section 3 discusses steady flows in a perfect conductor caused by external 
influences such as gravity, energy release, eta. These are generalizations of the 
Rayleigh and other processes of classical one-dimensional gasdynamics. The 
crucial significance of the two sound speeds, fast and slow, is explored. A degen- 
erate c a ~  of these flows is a generalization of the ordinary gasdynamics discussed 
in a previous communication (Shercliff 1958). Here the ordinary sound speed is 
dominant. 

The ha1  and most important section is an exhaustive but, it is hoped, simple 
treatment of magnetogasdynamic shocks in the presence of a field component 
normal to the shock front. For convenience this section is written so as to be 
intelligible by itself without reference to the rest of the paper. The approach is 
to exploit the properties of the generalized Rayleigh line, from which it is 
eaey to establish such facts as the possibility of six different types of shock, 
all oompressive. The results are reconciled with the work of earlier writers, 
most of whom performed numerical investigations of the case of a perfect gas 

In terms of the distinction between approximate and strict one-dimensionality 
made in the earlier paper (Shercliff 1960), the motions studied herein are strictly 
one-dimensional. All quantities are strictly independent of the transverse 
oo-ordinates md Maxwell's equations are obeyed. All quantities are assumed to 
vary sufficiently slowly with distance for fhite electrical conductivity to have 

f, = PVXVY 

H = h+*(vE+v;) 

u = internal energy 
v,, etc., Cartesian components of v 
Oo = tan-l (Bu/Bx), upstream of shock 
T = l / p ,  specific volume 

7, = FJa2 
T,, = Fu/,la2 

withy-5. 
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negligible effect, i.e. the magnetic Reynolds number is assumed to be virtually 
idni te .  This is not true within shocks, of course, but in this paper we are not 
primarily concerned with shock structure. 

We select the z-axis in the longitudinal direction. The equations 

curl E = - aB/at and div B = 0 

then indicate that a/at and a/ax of B, vanish and B, = const. We shall also assume 
i t  positive. In  $5 2 and 3 we restrict the investigation to cmes where B and the 
fluid velocity v lie in xy-planes and B, = v, = 0. 

The equation of continuity is 

and the dynamic equations state that (in MKS units) 

in the absence of viscous stress or any additional force on the fluid. For a perfect - 

conductor we have DB, = B,%-B -, av, 
Dt ax y a x  

(3) 

while in the absence of viscous or Ohmic dissipation, heat exchange or relaxation 
processes (i.e. thermodynamic disequilibrium) we have 

- 0. 
Ds 
ot- (4) 

In  steady flow this implies s is constant. We shall msume this is also true in 
unsteady cases, so that dp = a2dp. 

2. Simple waves 
It is well known (Kulikovsky 1958; Friedrichs Q Kranzer 1958) that simple- 

wave solutions of the equations (1) to (4) exist, there being two wave speeds, 
the fast and the slow, in each direction. The Alfvh mode has been excluded by 
the restriction that us and B, vanish. We remark in passing that Alfvh simple 
waves are three-dimensional and involve arbitrary rotations of a transverse 
field component of constant magnitude, the thermodynamic state being constant. 
Thus the wave speed B,/(pp)* is constant and there is no steepening or spreading 
tendency. 

For a simple wave in the zy-plane, travelling in the x-direction at a speed c ,  
we may replace DIDt by - c a / a z  in ( 1 )  to (3)) which become, in differential form 
at a given instant in time, 

( 5 )  

The eliminant of ( 5 )  ia the familiar equation which gives the real fast and slow 
wave speeds 

c4 - c2(a2 + b2) +a%: = 0, 

I pdv, = cap, -pcdv,+a2dp+BudB,/,u = 0, 

-pcdv, = B,dB,/p, - cdB, = B,dv, - B,dv,. 

(6) 
31-2 
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where b, = B,/(pp)*, b, = B,/(,up)* and b2 = b: + b;. Equation (6) may usefully be 
rewritten 

These three quantities are positive for fast waves, negative for slow waves. 
From the first two equations ( 5 )  it follows that 

dp a2 dB, - db, l d p  
p C 2 - b 2  B, b, 2 p 

-+--* 

This shows that compressive fast waves increase I B, I while compressive slow 
waves decrease [By\, the reverse being true for expansive waves. These facts 
have been pointed out by various authors (e.g. Friedrichs & Kranzer 1958). 

A right-travelling simple wave of either type may be specified by an arbitrary 
distribution of density p(x) at some initial instant, the other variables vz, v, 
and B, then being determined by equations (5 ) .  If all four of p, v,, v, and B, 
were chosen arbitrarily at an instant, the resultant motion would in general 
involve left- and right-travelling slow and fast waves, and these would not be 
simple waves any longer. Simple waves cannot be superposed as the problem 
is non-linear. 

It is instructive to study the equation which determines B,, given p ( x ) ,  in the 
case of simple waves. This can conveniently be obtained by eliminating c from 
(6) and (8), to give 

This gives two real differential equations of the first order. For any values of 
B, and p, the two values of dB,/dp have opposite signs, their product being 
-pa2/p,  and the two families of solutions may readily be identified as faat or 
slow, in accordance with the comment after (8). Typical trajectories of these 
solutions on the B,/p plane are illustrated in figure 1. The resemblance of the 
curves to orthogonal confocal conics is striking. Indeed the curves have exactly 
this form in the case of a perfect gas for which y = 2, but the curves have approxi- 
mately this shape for any gas which satisfies the two conditions: 

(i) a2 + 0 as p --f 0, isentropically. This ensures that dB,/dp + 0 as p + 0 
along the slow branches. 

(ii) (a/+) (pa2), = {a2+p(a2p/ap2),] always positive. This is a slightly stronger 
condition than the Weyl condition and requires that ( a 2 p / a ~ 2 ) s  be greater than 
~ ~ 1 7 ~ .  This condition is necessary to secure that only one singular point X occurs. 
The density at this point is given by the condition pa2 = B i / p  which fixes p if 
pa2 varies monotonically with p. 

Other facts which permit the establishment of the form of the branches are 
as follows: 

(a) Equation (9) is even in B,, which implies symmetry in the p-axis. 
( b )  dB,/dp cannot change sign while B, and p are finite and non-zero. 
(c) From (7) and (8) we have l-(B,/p)dp,/dB, = bi/c2, positive. Hence 

\BJp[ increases with p on the fast branches and B,, b, and c (fast) + co asp + 03, 
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whereas b, --f 0. Thus (B,/p) dp/dB, -+ 1 and B,/p + const. along the fast 
branches as p --f co. The fast waves are then tending towards the case treated 
earlier (Shercliff 1960 and others) where the field is essentially transverse, with 

We observe that simple waves are either fast or slow throughout. The only 
exception to this occurs when B, = 0 throughout, i.e. an ordinary simple wave 
for which c = a.  When B, = 0, c = a or b,. If p < p x ,  a < b,, and if p > px, 
a > b,. I n  either case, the wave for which dB,/dp is infinite has c = b,. The fact 
that the fluid enters or leaves a simple wave at a relative normal velocity of b, 
where B, = 0 makes an interesting contrast with the well-known result that the 
fluid enters or leaves a shock wave at a relative normal velocity of b, when B, = 0 
on the other side of the wave, which is then a switch-on or switch-off shock. 

B, % B,. 

B, 

FIGURE 1. Trajectories on the B,/p plane for simple waves. 

In  each slow wave there are upper limits on density and B,, and in each fast 
wave a lower limit on density, except in the ordinary wave with B, = 0. 

If the pressure is negligible in comparison with the magnetic pressure, as in 
the ionosphere, we have the interesting degenerate case where a = 0. The slow 
and fast speeds then become zero and b, respectively. The fast waves still travel 
faster than the Alfven speed b,. Their trajectories on the B,/p plane are the hyper- 
bolae Bi + Bi cc p2 ,  and along each trajectory c cc pi .  

2.1. Steepening of compressive simple waves 

From the preceding section we see that B, cannot change sign in a wholly 
compressive wave and that a wave in which B, does change sign must be partly 
expansive. But an expansive and compressive wave need not involve a change 
of sign of B, unless the relevant extremum of p is reached. 

It is natural to inquire whether compressive simple waves show the usual 
steepening tendency which leads to the creation of compressive shocks. A t  the 
same time expansive waves would show a spreading tendency. That this occurs 
has been stated by Liubarskii & Polovin (1958). The condition for its occurrence 
is that, for right-travelling waves, 

be positive. 

d c dc 

P d p  
d p ( U ” + C )  = -+- 
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Differentiation of (6) and the use of (8) leads to the result 

c dc c 
p+dp=p 

Granted Weyl’s conditions, it follows from the form of (10) that c/p+dc/dp is 
indeed positive and that fast or slow compressive waves, in which B, does not 
change sign, do steepen, presumably into the fast or slow shocks that are dis- 
cussed later. These too involve no change in sign of B,. A simple wave in which 
B, did change sign would not entirely steepen; the expansive parts would spread 
instead. Thus it is hard to see how the so-called intermediate shocks, in which 
By changes sign, could be created directly by a steepening process. This perhaps 
adds to  the doubt which has been cast on the existence of intermediate shocks by 
Akhiezer et al. (1968) and Germain (1959) and others. Akhiezer et al. have shown 
that intermediate shocks, treated as discontinuities, are unstable to weak dis- 
turbances, while Germain has shown that intermediate shock structures cannot 
exist for certain values of the diffusivities. An obvious question deserving in- 
vestigation is whether intermediate shocks could arise when a shock, newly 
formed from the compressive part of a simple wave, advances into an expansive 
part in which B, is reversed. 

In the degenerate cases where either the longitudinal or the transverse field 
component vanishes, condition (10) yields the results: 

ac T4 a2p 3 ~ 2 p 2  
(i) If B, = 0, c2 = aa+b2 and -+- = - ( ( ? ( ) s + ~ ) ,  

p ap 2c a7 

in agreement with the earlier paper (Shercliff 1960). 
(ii) If B, = 0, either 

the usual result for ordinary simple waves, or 

c dc 3b 
c = b  and -+-=- 

P dP 2P’ 

This result also applies to the case where a = 0. In  all these degenerate c w s  
compressive waves still steepen. 

3. Steady motions 
In  this section we generalize the theory of strictly one-dimensional steady 

motions (Shercliff 1960) to include the effect of a longitudinal field component. 
This involves our considering variation of transverse momentum. We continue 
to take the gas as having perfect electrical conductivity, except in Q 3.1. 

In  steady one-dimensional gasdynamics some influence must be exerted on 
the flow in order that any changes should occur at all. By ‘influence’ is meant 
the application of additional forces to the flow (by viscous stress, distributed 
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drag, actuator disks, gravity, etc.) or heat exchanges (by conduction, radiation 
or release or absorption of heat by chemical, nuclear, or thermonuclear reaction). 
It is possible to treat the resultant magnetogasdynamic processes in the sym- 
metrical manner already developed for ordinary gasdynamics (Shercliff 1958). 
A difference here is that Q, the mass flow per unit area, is constant because the 
motion is strictly one-dimensional. 

Some of the processes may be difficult to achieve in reality, but nevertheless 
it can still be useful to consider them as mathematical loci since worthwhile 
results can be deduced from them, particularly about shocks. Germain (1959) 
goes further and considers mathematical loci where quantities such as Q or the 
electric field E, are varied. These cannot represent processes occurring in space, 
since # and E, must be uniform by continuity and Maxwell’s equations, as is 
pointed out below. 

In  steady motions, (1) degenerates to 

pvx = Q (const.), assumed positive, 
and ( 2 )  gives 

pvi + p  + Bt/2,u = F, and pvxv, - B,B,/,u = F!, 

where Fx and F, are constant in the absence of additional forces or stresses in 
the z and y directions, respectively. Since E + v x B = 0, we see that E, is the 
only component of electric field, and Maxwell’s equation curlE = -aB/at = 0 
here indicates that E, is uniform. Since Bx is also uniform and non-zero, we can 
suppress any E, by the choice of axes moving in the y-direction with a velocity 
E,/B,. Then v x B = 0 and we have the simplification that the flow and field are 
everywhere parallel. Hence Bu/pvy = Bx/Q = const. 

Another consequence of the vanishing of E is that no electrical energy exchange 
E . j occurs, and the stagnation enthdpy, H = h + t v z  = k + +(vi + v;), is con- 
stant in the absence of any additional heat or work exchange. 

The other major flow property which can be constant is the entropy 8.  This 
occurs in the absence of dissipation or heat exchange. 

We thus have the situation where a flow characterized by known values of Q 
and B, may undergo changes in which some or all of the quantities F,, F,, H 
and s may be made to vary. For given values of G and B,, three further quantities 
are necessary to specify the state of a flow-section (e.g. p, s and vy). Another set 
of three quantities which may be used as co-ordinates is (Fx, Fv, H ) ,  but then 
the flow-state is not uniquely defined. We shall see that there may be up to four 
states having these co-ordinates, mutually accessible via stationary shocks, 
since across a stationary shock F,, Fu and H are conserved (de Hoffman & Teller 
1950). Note that across shocks G and B, are also uniform and v can be made 
parallel to B on both sides. The fact that only three of the four quantities F,, F,, 
H and s am independent is expiessible by the relation 

vxdFx+~,dFV+GTds = # d H ,  (11) 

which results from the relation T ds = dh - dp/p for a gas in equilibrium. 
We shall concentrate on the six processes which may be defined by keeping 

any two of Fx, Fv, H and s constant. The processes may be interpreted physically 
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in various ways. The most interesting case is the generalized Rayleigh process, 
in which Fx and F, are conserved because no extra force is applied to the fluid, 
but H and s are changed by heat exchanges. Similarly we have a generalized 
Fanno process, in which F, and H are constant while dissipative forces operate 
in the x-direction but no energy is exchanged. Another adiabatic case is that 
where gravity or other forces in the x-direction result in reversible energy ex- 
change and F, and s are constant. Alternatively there may be forces in the 
y-direction, causing F, to vary. 

Some simple, important relations are 

(7 - 7 0 )  B, = F, BJG2 a d  (PO - p )  V, = pF,G/BZ, (12) 

and 7/T0 = v2/b2 = v;/bZ = VElb;. (13) 

where 70 = Bt/pGa = const., 

Relation (12) is particularly important when F, = const., as obviously the specific 
volume 70 is a singular value. Its importance has also been noted by Germain 
(1959). When T = T ~ ,  vx = b,, i.e. the flow is travelling at  the Alfv6n speed. 

In a11 six processes, the two of Fx, F,, H and s which are not being kept constant 
are stationary whenever v, equals the local fast or slow sound speed given by (6). 
This is easily demonstrated, for instance, in the case (H,  5) const. We have 

dBu -dP dvu and -+--, 
Bu P VU 

which together with (13) yield 

where X vanishes whenever v, equals either root of (6). 

The quantity Y in the last line denotes the expression 
The values of all such derivatives are presented in table 1 as multiples of X .  

Since the gas has a positive expansion coefficient, (aslap), and (as/%), in table 1 
are positive and T(as/ah), is less than unity. As a result Y can vanish, for example 
for a perfect gas when ./To = r/(r - 1). We shall not investigate this complicated 
(F!, H )  case any further, despite the fact that it is one of the processes that link 
the two sides of shocks. 

Not all parts of these processes may be physically meaningful. In the Rayleigh 
(F!,  F,) process, B, increases so much as 7 + 70 that Bi/2,u becomes larger than 
F !  and the pressure goes negative. Similarly, in the (F! , s )  process, I35 and vi 
become negative whenever p or pv; gets too large, at low and high values of 7, 

respectively. 
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In  the processes with F, constant the derivatives in table 1 increase without 
limit as 7 passes 70, and v, and By change sign via large values. 

When F, is not constant, the signs of F,, vy and B, are to some extent arbitrary, 
because only the squares of v, and Bv appear in Fx and H .  We can either keep 
F, constant in sign so that v, and Bv change sign discontinuously as 7 pmses 7 0 ,  

although Fx and H would be continuous (this course would be appropriate if 
we were interested in states having the same value of Fy, for example, the two 
sides of a shock) or we can keep vy and B, (and b,) positive and continuous, for 
convenience in discussing table 1. Then F, changes sign via zero as 7 passes 7 0 .  

0 0 

0 

0 

0 

0 

TABLE 1. Derivatives expressed as multiples of X .  

1 
Tpv: Y 

-___ 

The next task is to establish whether the stationary values of Fz, F,, H and s 
are maxima or minima. From relations such as 

we see that ax lap  takes the same value in all the processes when X = 0. The 
quantities such as (aX/as)pFy which enter are finite for all likely gases. In fact 

(ax/as)pFv = (b; - v:) + ( a 2 ~ / a 7 2 ) , .  

The common value of aX/ap is most easily evaluated in the (H,  s) case, using 
(7) with vs = c and the result 

abz . b2 2B aBV b2+2(v;-a2) - = --++up = - from (14) when X = 0. 
aP P PP aP P 

S 

ax (b;-v;) a2p 3 ( ~ ; - a ~ ) ~  
We find that - = - - ( T 3 ( @ )  + 

aP P b; 

an expression reminiscent of the denominator of (10). We conclude that in each 
case aX/ap has the same sign as (bi  - vi) when X = 0. For slow roots of X = 0, 
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(bz-  wz) and ( p  -po) are positive, for fast, negative. We can thus compile table 2, 
with the convention that b,, B, and vv me positive in the first two processes. 
They can be completed by changing the sign of b,, B,, wy and Fy throughout. 

It is easily verified that, in each process, the state is a single-valued function 
of p (apart from the ambiguity of sign of I?, already mentioned), provided the 
state of the gas is uniquely defined by p and any one of 8,  p or h. Each process will 
have only one sonic point of each kind, the fast when p < po, the slow whenp > p,,. 
This is illustrated in figure 2. Extra sonic points such as P and Q are precluded 
because on each continuous branch, maxima and minima must occur alternately 
but the nature of the extrema are stated in table 2. Figure 2 shows the difference 
between cases such as (a) where Fg = const. and (b) ,  (c)  and (d) where F, varies. 
I n  the latter case the ambiguity of sign of I?,, already discussed, is shown by the 
curves ( c )  and (d). 

Const. Slow sonic point Fest sonic point 

H, 8 FX max. ; F,, min. Fx min. ; Fq max. 
Fx, 5 Fqmin.; Hmin. Fq max. ; H max. 
Fq, 8 Fxmin.; Hmin. 
Pm F,, Hmax.; smax. 
Fq, H Fz min. ; s max. 

TABLE 2 

FIG- 2. Typical graphs of the five processes. (a) H or s against p with (F=, Fq) const. 
(Rayleigh line). (b)  H against p with (Fx, a)  const. (c) F,, against p with (Fz, s) const., 
B,  and v,, positive. (d) P,, against p with (Fx, s) conat., Pq positive. 

As in the earlier papers (Shercliff 1958, 1960) it is possible to explore the 
significance of the isothermal sound speeds, determined by (6 )  with aa/y replacing 
a2. The most important result which emerges is that the temperature T is a 
maximum at the two isothermal-sonic points that occur in a Rayleigh prooess, 
which also straddle the point p = po. This requires the further assumption that 
(a2p/ar2)T be positive, which is true for gases except near the critical point. As 
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with ordinary shocks, the Rayleigh process represents the shock structure in 
gases for which the thermal diffusivity is dominant. The isothermal fast and slow 
sound speeds are then critical for determining whether or not there is a shock- 
within-a-shock, in which the other diffusivities operate. 

The properties of Rayleigh lines are more thoroughly exploited in the study of 
shock transitions in $4. 

3.1. Ordinary generazized gas dynamics 

A degenerate case of the foregoing is worth studying briefly. This is the case 
which results from setting B, and B, to zero and which represents ordinary one- 
dimensional gas dynamics generalized to include transverse effects, but with the 
flow per unit area kept constant (although it is simple to waive this restriction). 
Again influences must be exerted on the fluid to cause changes to take place. 
These may still be electromagnetic in origin, just as electromagnetic effects 
were considered in the earlier work on ordinary gasdynamics (Shercliff 1958). 
As an example we can consider a flow at such low magnetic Reynolds number 
that the field may be taken to be uniform but at any inclination. Alternatively, 
we may imagine the processes as being somewhat idealized versions of the flows 
that occur in axial-flow turbo-machinery. 

Adopting the previous techniques, we consider the quantities G (here constant), 
H and s, as usual, together with f, = p +pvE and f, = pv,v,. They are related by 

We could generalize to three dimensions with a term v,df,. Again processes can 
be defined by taking two of H ,  s, f, andf, constant. Except in one case, the other 
two variables are then stationary when v, = a and the longitudinal Mach number 
is unity. 

The six processes are: 
f,, s cmst. Here the state of the gas and v, are constant and only v,, f, and H 

vary. This corresponds to flow through impulse blading. The condition v, = a 
is irrelevant. 

fy const. and one of 8 ,  f, or H const. There are merely the three processes (G,  s), 
(P, G )  or (G,  H )  treated in the earlier paper (Shercliff 1958) with a constant 
transverse velocity v, superposed. P and f, are identical, but H in the earlier 
paper did not include the term +v;. Now the condition v, = a is critical. 
f,, H const. This is a modification of the (P,G) Rayleigh process, in which 

p ,  p, s and v, vary as usud, but in addition v, varies in such a way that H is 
constant. The condition v, = a makes s and (h+*v;) a maximum and hence 
v, andf, a minimum. Indeed if H is too small, v, will fall to zero before v, reaches 
a. One way of realizing this process would be to have a uniform field in the 
longitudinal direction, the magnetic Reynolds number being low, and zero electric 
field. Then in this adiabatic, dissipative process the velocity vy across the field 
would decay to zero or until choking occurred at v, = a. 

H ,  s const. This is a modification of the (G,  s) process discussed in the earlier 
paper, in which p ,  p, s and v, vary as usual, but vu varies in such a way that H 
is constant. The condition v, = a makes f, and (h + +vE) a minimum and hence 
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vy and f, a maximum. Instead of the external energy exchange in the original 
(G, s) process, the transverse kinetic energy now acts as a sink or source of energy. 
It is interesting to observe that this transverse energy is a maximum when the 
longitudinul velocity is sonic. The process can be imagined to be brought about 
by stationary cascades of blades which apply forces to the fluid in a direction 
perpendicular to its motion, so that 

~ , d f ~ + ~ , ~ f U  = 0, 

in accordance with (15). It is perhaps necessary to point out that turbine nozzle 
rows are not subject to an upper limit on vy when v, = a, because G is not usually 
constant in them. 

The list of processes could be prolonged by putting other constraints on fz, f,, 
H and s. An example is the flow in zero electric field and a uniform oblique mag- 
netic field (at low magnetic Reynolds number) where the process is defined by 
specifying df,/df, (which equals - BJB,) and H = const. 

An important member of this family of processes is that which occurs as the 
structure of a shock in which the magnetic diffusivity is dominant, as considered 
by Ludford (1959), Bleviss (1959) and Germain (1959). Here we resurrect Max- 
well’s equations and take E as zero. Since the conductivity is finite the process 
does not belong to the family of flows with v and B parallel, already discussed. 
In  particular the extrema of entropy, etc., occur when v, = a, the ordinary sound 
speed, not the fast or slow ones. Thus a is the critical velocity for determining 
whether or not there is a shock-within-a-shock, in which the other diffusivities 
operate. Here the process is defined by taking H = const. and by relating f, 
and fu via the parameter By through the equations 

fXi-B32p = const., f,-B,B,lp = const. 

It is not proposed to discuss this process further here as we are not primarily 
concerned with shock structure. 

4. Shock transitions 
Ever since the Rankine-Hugoniot relations were generalized to include 

magnetogasdynamic effects by de Hoffman & Teller (1950), the nature of their 
solutions has been studied by many authors, notably Lust (1953) and Friedrichs 
(1954). The results of these and other writers are discussed at the end of this 
section. 

More recently, Germain (1959) has investigated the properties of possible 
shock transitions. His work is very close to the work reported here in many 
respects. He too considers an arbitrary gas obeying Weyl’s conditions, and also 
uses the generalized Rayleigh line to establish a classification of shocks by relating 
the velocity normal to the shock to the slow, fast and Alfven wave speeds. 
However, his proof that all shocks must be compressive involves two further 
loci, one a generalization of the Hugoniot curve, also used by Friedrichs & 
Kranzer (1958) and Iordanskii (1958), the other a complicated locus somewhat 
comparable to  the (F,, H )  process mentioned earlier. The use of this locus leads 
him to postulate an extra, unnecessary restriction on the gas properties. 
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In  this paper it is shown how nearly all the results follow simply from the 
properties of the generalized Rayleigh line. For completeness we start from first 
principles, taking the x-axis normal to the plane of the shock, i.e. in the direction 
of one-dimensional variation, with the shock stationary in the co-ordinate 
system. Maxwell's equations, divB = 0 and curlE = 0, then indicate that 
B,, B', and E, are constant. Since B, is non-zero we can choose axes moving in 
the y- and z-directions so as to make E,  and E,  vanish. The shock layer separates 
two uniform regions devoid of current, since curlB = 0 in them. Thus Ohm's 
law indicates tha t  (vxB),  and (vxB),  vanish outside the shock, and 
v,/B, = v,/B, = v,/B,. The shock layer contains a current sheet perpendicular 
to and responsible for the discontinuity in B across the shock. We choose the 
z-axis parallel to this current sheet so that B,, = Be, = B,, say, if we use the 
suffices 1 and 2 to denote the two sides of the shock. In  the shock the fluid suffers 
a net magnetic force perpendicular to the current sheet. Thus x-momentum is 
conserved and v,, = vZ2 = v,, say. Hence v,/vxl = B,/B, = v~/vx2,  and either 
(i) vxl = v,, = v,, say, or (ii) v, = B, = 0, two distinct cases. 

4.1. Case (i) . The Al@n shock (vzl = vx2 = v,) 
The equation of continuity, 

G, = G,, where G = pv,, (16) 

F,, = F,,, where F, = Gv, - B, BJp, (17) 

here indicates that p1 = p, = p, say. The y-momentum equation is 

which here leads to 

PVx(V,,- vv2) = B3v,,- VY2)lPVX since V,llB,l = V X / %  = v,21Bv2. 

It follows that v, = & B,/(pp)* if we reject the trivial case vYl = vy2. The wave is 
seen to be an Alfvbn shock, also called a transverse or symmetrical shock by 
some. The energy equation is 

H, = H,, where H = h + i v 2  (v2 = v$ + vi), (18) 

since E . j is zero everywhere. For the Alfvh shock this gives 

The s-momentum equation is 

Fxl = FT2, where F, = p+Gv,+ Bi/2p, (19) 

which here yields p ,  + Bqv/2p = p ,  + B&/2p. We see that u1 = u,, where u is 
the internal energy (h-p /p) ,  and that the thermodynamic state, uniquely 
defined by u and p, is unchanged by the shock. It follows that s1 = s, and 
] B,I = I B,I. The transverse field component simply rotates arbitrarily without 
changinginmagnitude. Alfvbnshocks in which it rotates through 180" (i.e. B, = 0) 
also belong to Case (ii). 
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4.2. Case (ii). Two-dimensional shocb (B, = 0 )  

Here the initial and final fields lie in a plane perpendicular to the shock. The 
array of solutions to the conservation equations (16)  to (19)  together with 

(20) B, = (Byvzlvy)~ or 2 

is much more complicated than in Case (i). We shall approach the problem by 
exploiting the fact that' the states on each side of the shock lie on a Rayleigh 
line, a locus defined by keeping B,, 0, Fx and Fv constant, subject to condition 
(20) .  The Rayleigh line is most simply specified in terms of p and T (the specific 
volume l/p). The resulting relation is 

( 2 1 )  

where T~ = BZ/,uG2 = const. It is instructive to consider the family of Rayleigh 
lines characterized by fixed values of F,, B,, G and 7,, and a series of values of 
I Fvl. These obviously take the form illustrated in figure 3, as Germain (1959) has 

Fz = p + GZr + Fi B;/2pG4(7 - T ~ ) ~ ,  

I \ \  

P 

Slow r,, Fast B',",ls 7 Slow F,/Q2 r0 r 

(a) (b )  

FIGURE 3. Rayleigh lines for given (ff, B,, B'J and various Fv on the p-7 plane. 
(a) =- B%t (b)  p, < Ba,lP. 

remarked. The condition for the occurrence of two branches (figure 3a) is 
F, > Bz/,u. The branches are labelled fast and slow according as v, > or < b,, 
where b, = B,/(,up)a, the longitudinal Alfvh speed. In  fact v;/@ = T/T,,, Also 

BJT-TJ = FuBx/G2 and w ~ ( T - T ~ )  = TFu/G. (22 )  

pz = ;p t a 2 ~ ,  (B, = 0), and the part of the verikal line 7 = T,, that lies below it 
Hence the line Fu = 0 consists of two straight lines, the ordinary Rayleighline 

(since B32p is positive). In physical terms the latter could represent a kind of 
Alfvhn wave in which changes are brought about by heat exchange or heat 
release. As IFu/ increases from zero in figure 3a, the fast branch disappears when 
F; 8p(Fx- B2/p)s/27Bt and the slow branch disappeara when F; 2 2BzFx/p. 
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The fast disappears first if 4Bi/,u > F,, and vice versa. These inequalities should 
be regarded as limitations on the shock states possible for given values of 
Fs, Fu and B,. 

Figure 3 also displays the dependence of B, on 7 along a Rayleigh line since 
the vertical intercept between that line and the ordinary Rayleigh line equals 
Bi/2,u. For a given value of Fu, B, and vv take different signs in the slow and fast 
regions, because of (22). 

A vital fact about Rayleigh lines is that along them Tds  = dH. This is easily 
verified from (16) to (20) using Tds  = dh - dplp. We are interested in states on 
Rayleigh lines having the same values of H so as to be mutually accessible via 
shocks and having increasing entropy as one proceeds downstream. This leads us 
to follow the standard procedure of considering the lines on the T-s diagram. 

FIGURE 4. Rayleigh lines for given (a, B,, FJ and various Fv on the T-a plane. 
(a)  F, > Bi/,u, (i) T* > r0, (ii) T* < T ~ .  ( b )  Fz c B:/,u. 

Since derivatives such as (apla~), ,  ( a p l a ~ ) ~ ,  (aplas),, etc., have been assumed 
constant in sign, the p-7 and T-s diagrams are very simply related topologically. 
Since also (a2p/a~2)s,  (a2p /a~2)T  are taken positive, Rayleigh lines and lines of con- 
stant 8 or T have opposite curvature in the p-7 diagram, and points on Rayleigh 
lines where s or T are stationary are clearly maxima of s or T. Moreover, only one 
point of each kind occurs on each (slow or fast) branch of a Rayleigh line. It 
follows that the lines for given (F,, B,, C) must be disposed w shown in figure 4. 
More rigorous proofs of the properties of the Rayleigh line are available in 0 3. 

The line Fv = 0 consists of the familiar ordinary Rayleigh line, with its entropy 
maximum at P where vx = a and 7 = 7*,  say, plus part of the constant volume 
line 7 = T ~ .  The distinction between (a)  (i) and (a)  (ii) lies in the relative positions 
of P and the point J where v, = b, and T = 70. For case (a )  (i) we need T* > 70. 

This is a condition on F,, B, and G. To be more specific one needs more facts 
about the gas; if it is a perfect gas then the condition for (a)  (i) is Fx > (y  + 1) Bi/y,u. 

As IFu[ increases from zero the branches move downwards and leftwards in 
figure 4 and finally disappear in accordance with the inequalities already 
discussed. Note that figures 3 and 4 are independent of the sign of F,, since Fu 
appears squared in (21). 
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4.2.1. Fast and slow s h c b  

Since Tds  = dH along Rayleigh lines, to a point such as X on each branch 
there corresponds another point Y on the same branch haxing the same value 
of H and placed more or less as shown in figure 4 to  satisfy the condition 

SfdTds = 0. Such pairs of points satisfy the conservation relations for a shock. 

Moreover, X, the point of lower entropy (and lower density in view of figure 3 )  
must be upstream. Thus shocks of this type, which we shall cdl  slow or fast, 
depending on which branch they belong to, must be compressive and longi- 
tudinally decelerative. From (22)  it follows that IBuI and Ivul increase across 
fast shocks and decrease across slow shocks. Across both types Bu and vv do not 
change sign. We observe that B, varies in the same way as in the slow and fast 
compressive simple waves discussed in 9 2. 

As we increase H ,  and X moves rightwards along its branch of a Rayleigh 
line, X and Y finally coincide at the entropy maximum, also a maximum of H .  
In this limit the shock becomes a weak sound wave across which Fs, Fu, H and s 
are conserved and at which vx equals either cf, the fast, or c,, the slow sound speed 
given by the well-known equation 

~ 4 - ~ ' ( ~ ~ ~ + b ~ ) + a ~ b :  ( c ~ - c , " ) ( c ~ - c ; )  = 0. (23) 

The dotted lines in figure 4 are the loci of these sonic points as I77 varies, which 
together with the line 7 = T,, divide the ordinary Rayleigh loop into four zones 
a, /3, y, 6 (two in figure 4b) .  From (21)  and ds /dp  = (as/ap), (dp/dp-a2) ,  or 
otherwise, it  follows that along a Rayleigh line, 

ds as (w: - CZ) ( v i  - c;) 
= (g) ,  ( v i - b : )  ' 

in which c,, cf and bx are local values. Note that c; 2 bit. 2 c," and (as/ap), is 
positive. It 'is evident from figures 3 and 4 that ds /dp  is positive in regions a 
and y ,  negative in /3 and 6, while (v: - b:) is positive in a and /I, negative in y 
and 6. Since b: 2 c:, (vz - ci)  is also positive in a and therefore (v; - cj)  is positive 
there too. In  this fashion we may readily establish the following inequdties 
that characterize states lying in the four zones: 

if we take all these velocities as positive. 
In  particular we observe that the normd velocity vx in slow and fast shocks 

jumps from supersonic to subsonic relative to the slow and fast sound speeds, 
but stays respectively below or above the Alfvbn speed. 
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4.2.2. Switch-on, switch-off, Alfve'n and ordinary shocks 

The case F, = 0 deserves closer scrutiny, since here the upper arm of the fast 
branch and lower arm of the slow branch have coalesced. Typical fast shocks 
now appear in figure 4 as L M  or QR and typical slow shocks as M N  or UV. The 
shock LN also satisfies the conservation and entropy conditions. Shocks QR, 
UV and LN are all ordinary shocks since the end points all lie on the ordinary 
Rayleigh line where BU = 0 and B, is ineffectual. 

At M ,  v, = b, and B, $. 0. Thus LM is what Friedrichs & Kranzer (1958) call 
a switch-on shock, while M N  is the switch-off shock. They are extreme cases of 
fast and slow shocks, respectively. On the side where the field is oblique the 
velocity equals the Alfvbn velocity; on the side where the field is normal to the 
shock, ct = the greater of a and b,, c, = the lesser, and (24) indicate that upstream 
of a switch-on shock v, > both a and b,, while downstream of a switch-off shock 
v, < both a and b,. 

The point M represents two states, differing only in the sign of B, and vy. 
This point therefore represents an Alfvh shock (in the case B, = 0) in which 
B, and vv reverse but the thermodynamic state (T, s) is unchanged. 

Switch-on and off shocks are not possible for all values of F,, C, B, and H ,  
even granted that F, > B:/,u, to permit the 7 = T,, branch. Given values of F,, 
U and B, fix the point J in figure 4. Switch-on or off shocks will obviously be 
possible only for smaller values of H than its value at J .  In  other words, a switch- 
on shock is not possible starting from a state from which an ordinary shock leads 
to a state at which v, > b,, i.e. starting from points to the right of K in figure 
4(a)(i), K being the other point having the same H as J .  Equally it is not 
possible to  jump to points to the right of K in figure 4 (a)(ii) via switch-off 
shocks. 

As H increases to its limit for switch-on shocks, the related switch-off shock 
weakens to vanishing point, and vice versa (e.g. M and N --f J as L -+ K ) .  
These limits on switch-on and off shocks are expressible in many ways. Bleviss 
(1959) in effect gives them as upper and lower limits on B, for a given upstream 
state, L say, where By = 0. Then B, and 70 must be such that J lies between 
L and N .  

4.2.3. Intermediate shocks 

We now consider shocks which join points lying on diflerent branches of a 
Rayleigh line, in which therefore B,, v, and (vi-b;) change sign. Following 
Germain (1959) we call these intermediate shocks. Provided Ej ,  I$ and B, 
satisfy the conditions for two branches to exist, there will be two pairs of states 
lying on the two different branches and having the same value of H ,  provided 
H is less than the lesser of the two maxima of H for given C, B,, F, and Fy, which 
may lie on either the slow or the fast branch. That there can be up to four states 
mutually accessible via shocks was observed by Ludford (1959) in the case of 
a perfect gas. We shall number these four states, 1, 2, 3 and 4 in order of in- 
creasing density, 1 and 2 being fast, 3 and 4 being slow. The fast shock 12 and 
slow shock 34 have already been discussed. There will also be four intermediate 
ones which travel in a direction to be determined from the entropy condition. 

32 Fluid Mech. 9 
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The four states, 1, 2, 3 and 4 lie respectively in the regions a, B, y and 6 and the 
inequalities (24) apply to them. 

Consider the two states 2 and 3 on the two arms closest to the T = T~ line. 
Suppose 8, > ss, as shown in figure 5. Consider the isentropics through 2 and 3 
which cut the Pv = 0 Rayleigh line in W and 2. Figure 5 shows the two possi- 
bilities. From (16) to (20), with a, B,, P, and s constant, we find that 

aH/ap = (v: - c:) (v2 - c;)/ptg, 

which is negative along 2W and 23 ,  in the B and y zones. Along 2 W and 23, 
p increases monotonically since. (aT/ap), is positive. Thus H decreases along 

I - -  

8 8 

FIGURE 6 

-- -- -- 
(4 8 ( b )  8 (4 8 

FIUURE 6. Rayleigh lines on the T-s plane, showing shocks that are 
(a) sonic ahead, (b )  sonic behind and (c) sonic ahead and behind. 

2W and 2 3 ,  as it does along W 2  since T d s  = dH. We conolude, wrongly, that 
H2 > Ha. Inevitably, then, 82 < ss. In  fact the states are numbered in order of 
increasing entropy, and we conclude that all six shocks joining them must 
involve increases of density and hence of pressure, since (ap/ap), and (8p/a8)p 
are both positive and non-zero, except at extreme states, such as those for 
a perfect gas where T, aa and p all tend to zero. (For a perfect gas we have 

increases across shocks since d h  = Tds + n i p ,  and hence that the kinetic energy 
*(?I: + wi) decreases, H being constant. 

In all intermediate shocks, upstream the velocity is above the local Alfvbn 
velocity, downstream it is below it. The four types 13, 14, 23 and 24 are dis- 
tinguished by the inequalities (24) applied appropriately upstream and 
downstream. 

(ap/as), = (7- i)p/R.) Moreover, except at such states, we see that h  SO 
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Intermediate shocks may be sonic ahead or behind; this occurs when H equals 
the lesser maximum of H for given values of Q, B,, Fj: and Fv, and is illustrated 
in figure 6. If Q, B,, F, and Fu are suitably matched, the two maxima of H are 
equal and the strangest case of all, sonic ahead and behind, can occur (figure 6c). 
If H is increased beyond the lesser of the two maxima for given Q, B,, Fz and Fu, 
intermediate shocks no longer occur. 

The Alfvh shock is the limit of 23 shocks as PU + 0. Similarly 13,14 and 24 
shocks in this limit become switch-on, ordinary and switch-off shocks, respec- 
tively. 

4.2.4. Strong shoclcs 

Questions so far avoided are whether H has lower limits in addition to upper 
limits on a Rayleigh line, whether H can be so low that members of the set of 
shtes 1,2, 3, 4 disappear and whether all parts of a Rayleigh line are accessible 
via shocks. In  ordinary gasdynamics the high density end of the Rayleigh line 
is not accessible from shocks, since for very strong shocks having infinite pressure 
ratio the density ratio is finite. 

Figure 7 shows a two-branched Rayleigh line, cutting the p and r axes in the 
points la, 2b, 3c and 4d. It may be shown that, whatever the behaviour of the 
gas, the kinetic energy S(vi+vi )  is successively less at these four points in the 
above order. The proof of this simple result is to be found in the appendix. To 
make progress we must plausibly assume that at these states at very low p 
(or r at 4d) the enthalpies h may be taken as equal. This is valid, for instance, 
if the gas approaches the perfect gas state there. It implies that the stagnation 
enthalpy H is successively less at the four points in order, so that at the point 2a, 
at which H has the same value as at la, H has a higher value than at 2b and so 
2a lies off the zero pressure axis. [N.B. dH1d.r and dH/dp are finite at 2b in view 
of table 1 provided T(as/ap), is finite there. This is certainly true for a perfect 
gas, for which T(i3s/13p)p = ~ / ( y  - l).] The shock la2a is a fast strong shock with 
an infinite pressure ratio but a finite density ratio. In a similar way, we can 
deduce the occurrence of the five other strong shocks la3a, la4a, 2b3b, 2b4b, 
3c4c. In figure 7 the dotted lines loosely connect points at which H is the same. 

32-2 
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Of course it is possible that the lines of higher H may not intersect the slow branch 
at all and some of the six strong shocks may be missing. If the Rayleigh line 
has only one branch, only one strong shock occurs. All the strong shocks have 
a finite density ratio. 

Several parts of the Rayleigh line are inaccessible to shocks. No shock can 
lead to  the arcs 2a2b, 3b3c or 4c4d, though shocks can start from the first two 
of these. 

Finally, we remark that, for a given Rayleigh line specified by (G, B,, F,, Fv), 
as H is lowered the states 1 , 2 , 3  and 4 will disappear in that order as the pressure 
at each state falls to zero in turn. In  other words, members of the family of six 
shocks characterized by given values of (Q, B,, I?,, Fg, H )  may be missing because 
H is too low, just as they may be missing because H is too high and for other 
reasons already discussed. 

4.3.  Comparison with previous work on shocks 

Our simple classification of shocks into six types obviously needs reconciling 
with previous classifications. Germain’s (1959) work has already been men- 
tioned. Friedrichs’s earlier work (1954) had only limited circulation, but one 
gathers he classified shocks as fast, Alfv6n and slow, and omitted intermediate 
shocks altogether. An anomaly appears in Friedrichs & Kranzer’s later paper 
(1958),  however, where it is wrongly stated that By may reverse in slow shocks 
for which v, < b, on both sides. 

Several other authors, including Helfer (1953), Lust (1955) and Bazer & 
Ericson (1959),  have performed extensive numerical explorations of the shocks 
that occur for the case of a perfect gas with y = 9. The parameters they choose 
to specify their shocks, though they may be convenient for computation, are 
awkward for classifying the shocks, chiefly owing to the fact that upstream and 
downstream conditions are not treated symmetrically. One might argue in 
their favour that one usually knows conditions upstream of a shock, but even 
this is debatable. Usually the obliquity of a shock is not known. Here the work 
of Cabannes (1959) is perhaps more realistic, since he takes flow deflexion angle 
as a known quantity instead. 

Helfer recognized the three classes of shocks, fast, slow end intermediate, but 
did not distinguish the four types of intermediate shock. He presents his 
numerical results without much comment. Lust’s results are discussed later. 

Bazer & Ericson chose as basic parameters to specify a shock the upstream 
values of (a /b )2 ,  tan-l (BJB,) and lAB,I/B, which they denote by so, do and h, 
respectively. A denotes change across the shock. They classify shocks into fast 
shocks in which By increases and ‘slow’ shocks in which Bg decreases and may 
reverse. We add the inverted commas to distinguish true slow shocks from ‘slow’ 
shocks, which also include the four kinds of intermediate shocks. They further 
subdivide their fast and ‘slow’ shocks into two types, depending on whether the 
shock is uniquely or doubly defined by h, for given values of so and 8,. This is 
a purely mathematical distinction, depending on the fickle behaviour of the 
variable h, although for ‘slow’ shocks it does distinguish between shocks in 
which lByl increases or decreases, as is discussed later. 
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It is not difficult to locate the five different sorts of 'slow' shocks on Bazer & 
Ericson's graphs. Figure 8 shows a typical specimen, a rough and augmented 
version of the curves of v,/b, (upstream of shock) against k for so = and 
8, = 20" and 60°, taken from their figure 7. Bazer & Ericson themselves point 
out that at A and B' the shock degenerates to  a slow sound wave and to an Alfvhn 
shock, respectively. They also point out that D, the maximum of v,/b, (upstream) 
for given values of so and O,, occurs when the flow is slow-sonic, downstream. 

N e. 
d 

A 
A f&Slow sound wave 

- -Slow sonic behind 

8, = 60" 

L 
/ F  

8 
h 

FIGURE 8. Approximate reproduction of Bazer and Ericson's graph. 
(N.B. h is 1 AB,I/B, not enthalpy.) 

Another critical point on the curves is where v, = b, (upstream) at B. Here 
we have the switch-off shock, where k = sine,, so that B, = 0 downstream. 
HB = BF. Finally, we have points where the flow is fast-sonic upstream. At 
such points, (23) gives 

(~x/bx)&,s~ream = [( 1 + $0)  + {( 1 + sJ2 - 490 COS' 8,}4]/2 COS' 80. 

These points, C and E ,  are readily located on the 8, = 20" curve at the value 
v,/b, = 1-07, but 8, = 60" is too large for them to occur. Here then is a more 
significant division of Bazer & Ericson's curves for 'slow' shocks into two types, 
depending on whether or not there occur these fast-sonic points. This division 
does not coincide with Bazer & Ericson's division even for a perfect gas. 

The critical points A to P separate the five types of 'slow' shock in figure 8. 
Starting from the slow sound wave at A we traverse a region of pure slow shocks 
34 before these change to intermediates of type 24 as the upstream state 
crosses the v = b, 7 = 7, line at the switch-off shock B, and so-on, until the Alfvhn 
shock P is reached. 

As 8, tends to zero, the arc AD tends to the axis k = 0 representing ordinary 
shocks, EF vanishes and DE becomes the switch-on shock curve shown by Bazer 
& Ericson. Fast and slow shock rbgimes are connected to intermediate rhgimes 
via switch-on and switch-off shocks, respectively. 

For each suitable value of so there will be a value of 8, for which C, D and E 
coincide. This triple point then represents those freak intermediate shocks which 
are fast-sonic upstream and slow-sonic downstream. 
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Another interesting feature of Bazer & Ericson’s curves is that they show 
when lByl increases in intermediate shocks. This occurs on the part of the curve 
to the right of FG in figure 8. This question was dso considered by Polovin & 
Liubwskii (1968)’ whose condition Bt < pv&l(pl +p2)/2p2 in our notation is 
more simply written 7, c F (bar denotes mean value between two sides of shock), 

FIQURE 9. Approximate reproduction of Lust’s graphs. 

which follows easily from (22). We observe that there exist shocks (a) besides 
Alfvkn shocks (F) in which the magnetic field intensity iu unchanged. Such 
shocks have various simple properties, including 

T = ro, Ap + G2Ar = 0 and Ah + (B2/2p) AT = 0.  

Bazer & Ericson’s graphs do not show the strong shocks considered in $4.2.4, 
for which so tends to zero. The only strong shocks they do show are ordinary 
strong shocks which occur as a case of fast shocks as a and b tend to zero, 80 being 
finite and non-zero. 

Lust’s (1956) graphs are similar to those of Bazer & Ericson. Figure 9 shows 
approximate specimens taken from Lust’s figures 6 and 6. The curves again 
correspond to constant values of so and 8,. Indeed the lower figure is almost the 
same as our figure 8, because ( ~ , / b , ) ~  cc ( V , / C , ) ~  and h cc 1 -Hv2/Hvl for given 
values of 80 and B0. The various regions on Lust’s curves are readily identifiable. 
In  the example illustrated the intermediate branch enters the 13 and 14 regions 
by going fast-sonic ahertd at  the same value of ( V , / C , ) ~  as that at  which thefmt 
branch begins. Lust’s curves show how the fast and intermediate branches are 
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connected via the impossible region, which infringes the Second Law. This part 
of the curve would be significant, however, if we were to interchange upstream 
and downstream conditions. 

Bazer & Ericson remark that if the values of so and 6, are fixed, As and vx/b, 
(upstream) are stationary when the normal velocity is sonic downstream. This 
identifies the point D in figures 8 and 9. This result is a general one, independent 
of the perfect gas assumption, as may be seen from the following argument. 

To fix so and O0, let us specify the upstream thermodynamic state and field 
strength and orientation completely, leaving the velocity free to vary. If 
suffix 1 denotes upstream, then we find that, as the upstream condition varies, 

dFx = 2vXldG, dF, = 2vUldG, dH = (vil+v$)dG/G. 

Generalizing (1 1) to permit variation of the spatially uniform parameter G gives 

vxdFx+ v,dFv+ GTds - GdH = (v; + v:) dG, 

which may be applied to the downstream state (2), which has the same values 
of Fx, H and G as does (1). Hence 

GT2ds2 = {(v,1- Vx2l2 + (Vy1- v,2)2> dG, 

which is equivalent to Bazer & Ericson's equation (78). Hence if ds2 vanishes 
so do dG, dFx, and dH if the states 1 and 2 are different. But 

and 

are easily shown to be finite if 72 + 7,,. Thus, when s2 and B are stationary we 
have 

@GFvs* = 0, 

which, by table 1, implies that state 2 is sonic, provided T~ 9 T ~ .  Moreover, 
since sl, p1 and b, are fixed, As and (vx/bx)l are indeed stationary in this c m .  

4.4. Conclusion 

It is apparent that the generalized Rayleigh line offers many advantages for 
the study of magnetogasdynamic shocks, without the use of the perfect gas 
assumption. From it, we easily demonstrate the facts that the shooks must be 
compressive and that there are up to four states mutually accessible via six 
kinds of shocks, these four states being distinguished by the magnitude of the 
normal velocity in relation to the three local velocities, the two sound speeds 
and the Alfvh speed. It is easy to see how the six kinds of shock are conneoted 
with one another via the degenerate special cases of sonic states, Alfven shocks, 
switch-on, switch-off and ordinary shocks. Not least of the advantages of the 
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Rayleigh line is its utility as a visual aid to remembering the multiplicity of 
cases which occur ! 

In  this paper the questions of shock structure, shock stability and the ability 
of dissipative processes to permit the shocks to occur have been ignored. The 
most exhaustive discussion of shock structure is that of Germain (1959).  Pro- 
bably not all the shocks are possible; Alfvh shocks, as distinct from Alfvbn 
simple waves (so broad that dissipation may be neglected) involve the absurdity 
of zero entropy change in the face of high spatial gradients, and one suspects 
that the closely related 23 shocks also fail because the entropy change is too 
small. 

It is a pleasure to record my debt to M. D. Cowley for many stimulating 
discussions. 

Appendix: Proof that the kinetic energy is successively less at the points 
l a ,  2b, 3c and 4d in figure 7 

A t  4d v, and vu both vanish and so we need consider 4d no further. 
At l a ,  2b and 3c, 7 is given by the cubic 

E E (7 - 7,) (7 - TO)' + 7oT;/2 = 0, (25 )  

derived from (21) ,  where 7, = F2/G2, 7u = Fu/Ga. The kinetic energy 

in which we have used (25 )  to eliminate T~ or Fu. We are thus essentially interested 
in the quantity K = ~ ~ { l +  2(7, - T ) / T ~ } .  Now 

(7, - 7 0 )  R = (7, - 7 0 )  K ( 1  27,/70) E 

E 373 - 3T2(70 + 27,) -k 7(70 -k 27,)' -/- (70 -k 27,) (7;/2 - 707,). 

This cubic form has been arranged to increase monotonically with 7. Its deri- 
vative is positive and only falls to zero at the value 7, = &(T~+ 27,), which always 
lies between la and 2b, and in fact is the value of 7 at which la and 2b finally 
coincide when the fast branch falls below the 7 axis as Fv increases. Since 7, > 70 

here, K therefore increases monotonically with 7 at the three points 3c, 2b and 
la  and our proof is complete. 

R E F E R E N C E S  

AKHIEZER, A. J. et al. 1958 J.E.T.P. 35, 731. 
BAZER, J. Q ERICSON, W. B .  1969 Astro. J .  129, 758. 
BLEVISS, Z. 0. 1959 Heat Transfer and Fluid Mechctniccr Inst., Calif. 27. 
CABANNES, H. 1959 Rech. adro. 71, 3. 
FRIEDRICHS, K. 0. 1954 Los Alamos Rep. LAMS-2105. 
FRIEDRICHS, K. 0. & KRANZER, H. 1958 N.Y.U. Inst. of Math. Sci. Rep. NYO-6480. 
GERMAIN, P. 1959 O.N.E.R.A. Publ., no. 97. 
HELFER, H. L. 1953 A8&0. J. 117, 177. 
DE HOFPMAN, F. & TELLER, E. 1950 Phy.9. Rev. 80, 692. 



505 One-dimensional magnetogasdynamics in  oblique fields 
IORDANSKII, S. V. 1958 C.R. A c d .  Sci. U.R.S.S. 121, 610. 
KULIKOVSKY, A. G. 1958 C.R. A d .  Sci. U.R.S.S. 121, 987. 
LIWARSKII, G. I. & POLOVIN, R. V. 1958 J.E.T.P. 35, 509. 
LUDFORD, G. S. S. 1959 J .  Fluid Mech. 5 ,  67. 
LUST, R. 1953 2. Naturf. 8a, 277. 
LUST, R. 1955 2. Naturf. 10a, 125. 
POLOVIN, R. V. & LIUBARSEII, G. I .  1968 J.E.T.P. 35, 510. 
SEERCLIFF, J. A. 1958 J .  Fluid Mech. 3, 645. 
SHERCLIFF, J. A. 1960 Rev. Mod. Phys. appearing shortly. 
W E n ,  H. 1949 Commun. Pure Appl. Math. 2 ,  103. 


